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Abstract

In this paper, we provide proofs of termination and size-optimality of the LEPP-Delaunay algorithm, for the quality generation
of triangulations. We first prove that the algorithm cannot insert points arbitrarily close to each other. We also show that the
algorithm terminates, producing well-graded triangulations with internal angles greater than 25.66 degrees for geometries with
input constrained angles of at least 30 degrees.
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1. Introduction

Given an initial triangulation τ of an input planar straight-line graph (PSLG) geometry composed of points and
segments, and an angle parameter θ, a generic Delaunay refinement algorithm generates a θ-quality triangulation τref
such that every triangle t of τref has angles greater than or equal to θ. To this end, for each bad quality triangle t
in τ (with smallest angle αt < θ), the algorithm selects a point p according to a defined point selection strategy and
performs a Delaunay insertion of p in the current triangulation. The process is repeated until τ satisfies the desired
quality property.

Ruppert’s algorithm is considered the first provably-good Delaunay refinement algorithm with good practical per-
formance [1,2]. Given a bad quality triangle t, either the circumcenter of t, or the midpoint of an encroached associated
segment, is Delaunay inserted in the mesh. Ruppert’s theoretical results guaranteed size-optimality, good grading and
refined triangulations with angles greater than 20.7◦, requiring input constrained angles greater than 90◦.

Several studies of circumcircle-based Delaunay refinement algorithm were also introduced. Chew [3] presented an
algorithm ensuring refined triangulations with angles between 30◦ and 120◦. Shewchuk [4] later improved upon the
results of Ruppert and Chew, producing triangulations with most angles greater than 30◦, while requiring constrained
angles greater than 60◦ (Shewchuk’s open-source software, Triangle [5], is supported by this results).

E-mail address: cbedrega@dcc.uchile.cl

1877-7058 c© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 24th International Meshing Roundtable (IMR24).



2 C. Bedregal and M.-C. Rivara / Procedia Engineering 00 (2015) 000–000

Further studies of circumcenter-based Delaunay refinement algorithms aimed to reduce the number of Steiner
points inserted during refinement. Erten and Üngör [6] proposed the insertion of off-centers. Given the bad triangle t,
their algorithm selects a point over the line segment joining the circumcenter of t and the midpoint of its smallest edge
s, such that the new triangle containing s is of acceptable quality (the current version Triangle implements this ideas).
Foteinos et al. [7] discussed a generalized, optimization-based, Delaunay refinement algorithm that selects points
inside geometrical regions related to the circumcircle of the bad quality triangle and close to encroached segments.
They guaranteed good grading and a lower bound angle on the angles of the refined triangulation close to 30◦ for
geometries with constrained angles of at least of 60◦.

The implementation of a circumcenter-based refinement algorithm is rather a cumbersome task (See Cheng et
al. [8], Section 6.3)). An efficient implementation should maintain priority queues for bad quality triangles and
encroached segments. Furthermore, the number of points of the final triangulation is sensitive to the order in which
triangles are processed (since circumcenters of small-angled triangles tend to eliminate bad quality triangles faster).

Based on a longest-edge strategy, the LEPP-Delaunay algorithm [9,10] is a different, simple approach for quality
Delaunay refinement, producing well-graded triangulations with internal angles of at least 30◦. The algorithm com-
putes the longest-edge propagating path (LEPP) associated with a bad quality triangle to find a local longest edge
in the triangulation and inserts the midpoint of such edge. The performance of the algorithm is not affected by the
order in which bad quality triangles are processed, and no priority queues have to be maintained, unlike Ruppert’s
algorithm. Previous studies have not provided complete proofs of the algorithm’s size-optimality, termination or good
grading; even though the algorithm shows optimal performance in practice.

In this paper we provide the theoretical proofs of size-optimality and termination of the algorithm, establishing
the LEPP-Delaunay algorithm in the set of provably good Delaunay refinement algorithms. We adapt a taxonomy
on the longest-edge bisection of triangles [11] and improve upon previous geometrical results on the algorithm [10]
to establish bounds based on the length of existing edges and on the circumradius of associated terminal triangles,
respectively. Our results guarantee that the insertion radius is at least half the length of the smallest edge of a triangle,
or at least half its circumradius. Finally, we prove that LEPP-Delaunay algorithm produces triangulations with internal
angles between 25.66◦ and 128.68◦ for input geometries with constrained angles of at least 30◦.

2. LEPP-Delaunay and Longest-Edge Refinement

The LEPP strategy is based on the concepts of terminal triangles and propagation paths introduced by Rivara [9]
(See Figure 1).

Definition 1. An edge eterm is called a terminal edge in triangulation τref if eterm is the longest edge of every triangle
that shares eterm. The triangles sharing eterm are called terminal triangles. For 2-dimensional triangulations, if eterm
is shared by two terminal triangles then eterm is an interior edge; if eterm is shared by a single terminal triangle then
eterm is a boundary edge.

Definition 2. For any triangle t0 in τref , the longest edge propagating path of t0, LEPP(t0), is the ordered sequence
{t j}

N+1
0 , where t j is the neighbor triangle on the longest edge of t j−1, and longest edge(t j) > longest edge(t j−1), for

j = 1, . . . ,N. Edge eterm = longest edge(tN+1) = longest edge(tN) is an interior terminal edge in τref and this condition
determines N. Therefore, either eterm is shared by the couple of terminal triangles (tN , tN+1), or eterm is shared by a
unique terminal triangle tN with boundary (constrained) longest edge.

Given an input PSLGP and a quality parameter θ, the LEPP-Delaunay algorithm produces a θ-quality triangulation
τref of P based on the constrained Delaunay triangulation (CDT) of the input data (a relaxed Delaunay triangulation
that includes the input (constrained) edges).

We only need to assume that no two constrained edges in the initial CDT meet at an angle less than 30◦ (in contrast,
the proofs provided by Ruppert assume that input edges meet at angles of at least 90◦ [2], while later studies assumed
input angles of at least 60◦ [4,7] .

For any bad quality triangle t (with smallest angle less than θ), the algorithm computes LEPP(t) and finds the
associated terminal triangles and terminal edge eterm. Then, it performs the constrained Delaunay insertion of the
midpoint of eterm if neither of the terminal triangles has constrained midsize edge. Otherwise, the midpoint of a midsize
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Fig. 1: (a) AB is an interior terminal edge shared by terminal triangles {t2, t3} of LEPP(t0) = {t0, t1, t2, t3}. (b) CD is a
boundary terminal edge with terminal triangle {t7} of LEPP(t4) = {t4, t5, t6, t7}.

edge is inserted in the triangulation (Figure 2(b)). The process is repeated until t is removed from the triangulation.
Figure 2 illustrates the refinement process. Algorithm 1 describes the LEPP-Delaunay algorithm.

Algorithm 1 LEPP-Delaunay Algorithm

Input: PSLG polygon P, tolerance parameter θ
Output: Constrained Delaunay triangulation τref of quality defined by θ

Construct τref the CDT of P.
Find S target ∈ τref , the set of bad quality triangles defined by θ
for each t in S target do

if t has longest edge or midsize edge constrained then
Perform constrained Delaunay insertion of midpoint of the constrained edge

else
while t remains in τref do

Find LEPP(t), terminal triangles ti, t j and terminal edge eterm {triangle t j can be null for boundary eterm}

Select point P, midpoint of eterm
if eterm is not constrained then

if midsize edge of ti is constrained and the longest-edge bisection of ti produces a triangle with smallest
angle < 30◦ then

P is the midpoint of constrained midsize edge of ti
else

Perform the same verification on triangle t j

end if
end if
Perform constrained Delaunay insertion of P into τref
Update S target

end while
end if

end for

Rivara et al. [10] discussed the guarantees of termination for angle parameters greater than 22.4◦. After the longest-
edge bisection of a bad quality triangle, the algorithm must ensure that the triangles produced around the new point
do not repeat the geometry of the refined triangle. A rare non convergence case could arise when θ ≥ 22.4◦ and
the midsize edge of the terminal triangle is not constrained. This scenario is avoided by bisecting the midsize edge
instead, the same way it is done when the midsize edge is constrained (See Figure 3).

Rivara and Calderon [12] introduce a variant of the LEPP-Delaunay algorithm which inserts the centroid of the pair
of terminal triangles instead of the midpoint of the terminal edge. They showed that, in practice, this strategy generates
triangulations with significantly less points than those produced by the original (midpoint) version. Moreover the non
convergence cases associated to midsize (constrained and non constrained) edges are completely avoided.
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Fig. 2: The refinement process of the LEPP-Delaunay algorithm. Tolerance parameter θ = 30◦ is the minimum
angle allowed in the triangulation. Target triangles are shaded in dark gray. LEPPs are shaded in light gray. (a)
Input triangulation. (b) - (e) Snapshots of each step of the process. (f) Final triangulation. In (b) the midpoint of a
constrained midsize edge was inserted

(a) (b) (c)

Fig. 3: (a) Terminal triangle with constrained midsize edge (bold). Bad quality triangles are shaded. (b) In this case,
the insertion of the midpoint of the longest edge would reproduce the geometry, creating an infinite processing cycle.
(c) The insertion of the midpoint of the constrained midsize edge successfully eliminates bad quality triangles without
reproducing the geometry.

Using geometrical arguments, previous studies showed that the algorithm produces constrained Delaunay trian-
gulation of at least 30◦ if non-constrained interior angles are included in the input geometry [10]. Note that for
non-constrained terminal triangles, the insertion of the midpoint of the terminal edge is equivalent to a longest-edge
bisection, followed by a sequence of local edge-flip operations needed to maintain the Delaunay property. In this
sense, the algorithm takes advantage of the properties of LEPP-Bisection algorithm, recently discussed in [13].

From a practical point of view, the algorithm presents the following important advantages:

(a) The LEPP strategy makes the algorithm independent of the order in which the triangles are processed. This
simplifies the implementation of the algorithm and makes it easily parallelizable.

(b) Selecting the midpoint of an existing edge is a robust operation and does not require additional strategies or
computations to find the triangles containing the point being inserted.

2.1. Delaunay Terminal Triangles

Terminal triangles in a Delaunay triangulation satisfy the following geometric property [10]:

Proposition 1. For any Delaunay triangulation τref , it holds that every pair of Delaunay terminal triangles in τref
have largest angles less than or equal to 120◦.
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Fig. 4: (a) Region R defines the area for point E of longest-edge neighbor triangle ABE. (b) Region R becomes a point
when γ = 120◦ (and triangle ABE is equilateral).

For any pair of Delaunay terminal triangles ABC and ABE sharing longest edge AB, vertex E of triangle ABE
must lie outside the circumcircle of triangle ABC. Let R be the region for point E where AB is the longest edge of
ABE. Region R is reduced to a point when the largest angle of ABC is 120◦. For a complete proof see [10]. Figure 4
illustrates this property.

Note that triangles with angles greater than 120◦ are never eliminated by inserting the midpoint of their longest
edge. These triangles are indirectly eliminated by the insertion of a point over other pair of terminal triangles (ti, t j) ∈
LEPP(t). Whenever the midpoint of the terminal edge lies inside the circumcircle of t, the edge-flip operations
performed to maintain the Delaunay property eliminate t and locally improve the angle distribution in the triangulation.

3. Analysis of the Insertion Radius

We call the insertion radius of a point p, denoted rp, the distance from p to the nearest point of the triangulation.
After the insertion of p, rp becomes the length of the shortest edge adjoining p in the triangulation. The intrinsic
bound on the largest angles of terminal triangles defines a bound on the insertion radius, which in turn can be used
to guarantee that new points cannot be inserted arbitrarily close to each other, and correspondingly, that new edges
cannot be arbitrarily small.

3.1. Bounds Based on the Circumradius

Lemma 1. For any Delaunay terminal triangle t(ABC) with circumradius r, the distances from the midpoint D of its
longest edge AB to any vertex of t is greater than or equal to r/2. Furthermore:

• d(D, A) = d(D, B) ≥ r
√

3/2, and

• d(D,C) ≥
{

r/2 if t is obtuse
r if t is acute

Proof. Consider triangle t(ABC) with |AB| ≥ |BC| ≥ |CA|, and angles γ = ∠ACB and α = ∠ABC respectively the
largest and smallest angles of t. Let r be the circumradius of t, and point D be the midpoint of longest edge AB.

Since |AB| = 2r sin γ, it follows that d(D, A) = d(D, B) = r sin γ, which has the smallest possible value of r
√

3/2
either when γ = 120◦ or γ = 60◦.

Distance to point C will depend on the geometry of the triangle. If t is an obtuse triangle, d(D,C) is lower bounded
by r(1 + cos γ), the distance from D to the closest point in the circumcircle. In this case d(D,C) has the smallest
possible value of r/2 when γ = 120◦. On the other hand, if t is an acute triangle, vertex C lies farther away from D
than from the circumcenter, then d(D,C) approaches r either when γ ≈ 90◦ or α ≈ 0◦.
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Fig. 5: Lower bounds for the insertion radius of point D, midpoint of longest edge AB of a triangle t(ABC). Shaded
ball of radius r/2 is fully contained in the circumcircle of t. (a) Largest angle γ = 120◦ and smallest angle α = 30◦.
(b) α = γ = 60◦.

Lemma 1 shows that the distance from the midpoint of a terminal edge to the vertices of the terminal triangle can
be bounded by the circumradius. The following theorem translates this result into a bound on the insertion radius.

Theorem 1. For any Delaunay terminal triangle t it holds that the insertion radius of point D, the midpoint of t’s
longest edge, is at least r/2, where r is the circumradius of t. Furthermore,

rD ≥


r(1 + cos γ) if t is an obtuse triangle
r if t is a right triangle
r(1 − cos γ) if t is an acute triangle

where γ is the largest angle of t.

Proof. Because of the Delaunay property, t has an empty circumcircle. Therefore, the distance from the closest point
of the triangulation to D is bounded by the distance from D to the circumcircle of t:

• If t is an obtuse triangle, then rD > dmin(D,C), where dmin(D,C) = r(1 + cos γ) is the shortest distance between
D and vertex C (Lemma 1).

• If t is a right triangle, then rD = r since D corresponds the circumcenter of t (Lemma 1).
• If t is an acute triangle, rD is equivalent to the insertion radius of an obtuse terminal triangle sharing the cir-

cumcircle of t. Let t′(AC′B) be this triangle, D is the midpoint of its longest edge AB, and γ′ = 180◦ − γ is its
largest angle; see Figure 5(b). Then rD > dmin(D,C′), where dmin(D,C′) = r(1 + cos γ′) = r(1 − cos γ).

Consider the pessimistic case where D is located as close as possible to the circumcircle; see Figure 5. Triangle t
corresponds either to the obtuse triangle with γ = 120◦ and α = 30◦ (Figure 5(a)), or to the equilateral triangle (Figure
5(b)). In both scenarios r(1 + cos γ) has the smallest possible value, r/2.

Let δD be the circle of radius rD centered at point D. Then, no other point of the triangulation could lie inside δD

because δD is contained by the empty circumcircle of t.

3.2. Bounds Based on the Shortest Edge

Lemma 2. For any Delaunay terminal triangle t with shortest edge of length l, the distance from the midpoint of its
longest edge to any vertex of t is greater than or equal to l/2.

Proof. Consider terminal triangle t(ABC) with |AB| ≥ |BC| ≥ |CA|, l = |CA|, γ and α respectively the largest and
smallest angles of t, and point D the midpoint of terminal edge AB.

The proof is based on the diagram for similarity regions proposed by Gutierrez et al. [11], later expanded by Bedre-
gal and Rivara [14]; see Figure 6. Candidate Delaunay terminal triangle t has vertex C above arc C5, corresponding to
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Fig. 6: Diagram for triangle t(ABC). Vertex C lies in one of the regions defining a triangle t with |AB| ≥ |BC| ≥ |CA|.
Shaded region corresponds to triangles with γ > 120◦.

triangles with γ ≤ 120◦. We consider triangles such that d(D,C) ≤ |CA| or d(D, A) ≤ |CA|. Consider c1 > 0 the ratio
between l and the distance from D to the closest vertex of t. The possible values of c1 are discussed below.

• d(D,C) ≤ |CA|: Corresponding to triangles with vertex C lying to the right of line OM of Figure 6. Constant
c1 decreases as C moves away from the intersection of arc C3 and line PD. At the same time, constant c1
decreases as C approaches line OM, acquiring the lowest value c1 = 1 when C actually lies over OM. In this
case d(D,C) = |CA| regardless of the triangles geometry. On the other hand, c1 increases as vertex C approaches
PD, acquiring the highest values for isosceles triangles where C lies over PD. Furthermore:

– If t is an acute triangle (region above arc C2), then c1 is maximized when t corresponds to the isosceles
triangle with γ ≈ 90◦. Therefore c1 <

√
2.

– If t is obtuse (region below arc C2), then c1 is maximized when t corresponds to the isosceles triangle with
γ = 120◦, and d(D,C) = |CA|/2. Therefore c1 ≤ 2.

• d(D, A) ≤ |CA|: Corresponding to triangles with vertex C lying above arc C4 of Figure 6. Constant decreases as
C approaches arc C4, acquiring the lowest value c1 = 1 when C actually lies over C4. In this case d(D, A) = |CA|
regardless of the triangles geometry. On the other hand, c1 increases as vertex C moves away from arc C4:

– If t is an acute triangle, then the equilateral triangle maximizes the value of c1, and d(D, A) = |CA|/2. In
this scenario c1 ≤ 2.

– If t is an obtuse triangles, then the isosceles triangle with γ ≈ 90◦ maximizes the value of c1, and d(D, A) =

|CA|/
√

2). In this scenario c1 ≤
√

2.

Since c1 ≤ 2, it follows that the distance from D to the closest vertex of t is at least l/2.

Lemma 2 shows that, after introducing the midpoint of a terminal edge, the length of the edges adjoining the new
point can be bounded by the length of the shortest edge of the terminal triangle. The following theorem translates this
result into a bound on the insertion radius.

Theorem 2. For any Delaunay terminal triangle t with shortest edge of length l, it holds that the insertion radius of
the midpoint of its longest edge is at least l/2.

Proof. The proof follows the same logic of the proof for Theorem 1. Consider the pessimistic case where D is
located as close as possible to t’s circumcircle (e.g., when γ = 120◦ and α = 30◦). Then, l = 2r sin 30◦ = r,
d(D,C) = 1 + cos 120◦ = r/2, and rD = l/2. Due to the Delaunay property, any other point of the triangulation must
lie outside the circumcircle of t. Then rD > l/2.
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Fig. 7: Lower bounds for the insertion radius of point E, midpoint of constrained midsize edge BC of a triangle
t(ABC). Shaded ball has radius d(E,B)

√
3

. (a) After insertion of point D′ triangle CBD′ has largest angle ∠BD′C = 120◦

and smallest angle ∠CBD′ = 30◦ . (b) Input point Q is the closest point to E therefore rE = d(E,Q).

3.3. Bounds for Constrained Midsize Edge

When the algorithm selects the midpoint of the constrained midsize edge of a terminal triangle, the insertion radius
of the new point will be defined by the length of the midsize edge. Among the vertices of the terminal triangle, the
endpoints of the midsize edge become the closest points to the point selected.

Lemma 3. Let t(ABC) be a Delaunay terminal triangle with constrained midsize edge BC. Let E be the midpoint of
this edge. Then, the insertion radius of E, rE , is greater than d(E, B)/

√
3 = |BC|/2

√
3.

Proof. Consider that no point from the input lies too close to constrained edge BC. If at some point before the
insertion of E the midsize-edge neighbor of t was refined, say t′, the algorithm inserted the midpoint of the longest
edge of t′, say D′. As observed in Figure 7(a), due to the requirement of 30◦ to insert the midpoint of longest edge
instead of the midpoint of the constrained midsize edge, the smallest triangle that the algorithm could produce is the
obtuse triangle with largest angle of 120◦ and smallest angle of 30◦. After a few calculations, distance d(E,D′) is
equal to |BC|

2
√

3
which in turn is equal to d(E,B)

√
3

, defining a lower bound on the insertion radius of E.

It must be noted that, if an input point Q lies within distance d(E,B)
√

3
from point E (Figure 7(b)), or point Q is the

midpoint of a constrained edge e , BC previously inserted by the algorithm (and Q lies within distance d(E,B)
√

3
from

E), then Q is the point of the triangulation closest to E. In both scenarios rE = d(E,Q), as stated below.

Lemma 4. Let t(ABC) be a Delaunay terminal triangle and E be the midpoint of its constrained midsize edge BC. If
there is a point Q within distance d(E, B)/

√
3 from E, then Q is either an input point or Q is the midpoint of another

constrained edge. The insertion radius of point E is d(E,Q).

The following theorem synthesizes the bounds on the insertion radius. We define a bound on the insertion radius
of the midpoint of a constrained midsize edge of a terminal triangle in terms of the circumradius of the triangle and in
terms of the smallest edge of the triangle.

Theorem 3. For any Delaunay terminal triangle t the insertion radius of the midpoint of its constrained midsize edge
is at least r/2

√
3, where r is the circumradius of t; or at least l/2

√
3, where l is the length of the shortest edge of t.

Proof. The bound is based on the worst-case scenario where t is the obtuse triangle with largest angle γ = 120◦ and
smallest angle α = 30◦, as illustrated in Figure 8.

Consider triangle t(ABC) with constrained midsize edge BC, shortest edge CA and point E the midpoint of BC.
From Lemma 3 we know that rE > |BC|/2

√
3, which applies to the general case of refinement of terminal triangles.

Since |BC| is lower bounded either by r/2 or by |CA|/2, it follows that rE >
r

2
√

3
, or that rE >

l
2
√

3
.

Theorem 3 holds when there are no input points or points over a constrained edge lying within the bound stated
above, otherwise the insertion radius is defined by the distance to this point (Lemma 4).
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Fig. 9: Point D and its parent point D̂. (a) When the triangle is both a terminal triangle and the current target triangle
processed. (b) Triangle t2 is the terminal triangle in LEPP(t0).

4. Proof of Termination

A geometric argument of the algorithm’s termination is based on the facts that the algorithm improves the triangles
as they are processed, and that the algorithm constrains how close together two points can lie and how short an
edge can be. Points inserted by the algorithm cannot introduce edges arbitrarily short, so the algorithm cannot run
indefinitely creating ever smaller triangles.

The key idea behind the termination of the algorithm is that newly inserted points have an insertion radius lower
bounded by insertion radius of existing points of the triangulation. We call the parent of a point D, denoted D̂, the
vertex of the target triangle u responsible for the selection of D (i.e., the first triangle in the propagation path), shared
by the longest edge and shortest edges of u (Figure 9).

We assume that the algorithm processes the target triangles in set S target in an specific order, selecting at each step
the triangle in S target with the smallest edge lmin. The idea of a processing order is used to facilitate the analysis of the
algorithm. In practice, a processing order is not necessary since the algorithm is order-independent.

Lemma 5. Consider a tolerance parameter θ, point Q the midpoint of a terminal edge, and point P the parent of Q.
Then rQ ≥ λrP, where λ is a constant determined by θ.

Proof. Since Q is the midpoint of a terminal edge, the ratio between the insertion radius of Q and that of its parent
is maximized for the target terminal triangle with largest angle γ = 120◦. For a terminal triangle with smallest
angle α = θ the ratio between the insertion radius of Q and P is bounded by 1+cos 120◦

2 sin θ , wich corresponds to the ratio
between the smallest edge of the target terminal triangle and the distance from the midpoint of its longest edge to the
circumcircle.

For any tolerance parameter θ ≤ deg 14.48, it holds that λ > 1, and the insertion radius of new points is always
greater than that of their parents. For θ > deg 14.48, constant λ approaches 1/2 as θ approaches 30◦.

Lemma 5 establishes a theoretical limit on the rate the insertion radius evolves as new points are inserted. A
configuration of triangles maximizing the decreasing rate of insertion radius (by half) can only happen for a tolerance
parameter θ = 30◦: the algorithm selects a bad quality terminal triangle with angle γ = 120◦ and angle α = 30◦.
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Fig. 10: Terminal triangle t(ABC) with γ = 120◦. (a) α = 14.48◦: Circle δD of radius |CA| centered at point D is
empty of any point of the triangulation. (b) α = 25.66◦: Relationship between edges and circumradius r. (c) Shaded
areas define the regions of potential points that could produce edges smaller than CA through edge-flip operations.
δD1 is the circle of radius |CA| centered at D. Dotted circles represent the circumcircles of triangles t1 and t2.

For any triangle with smallest angle α < 14.48◦ it is guaranteed that the insertion radius of any point inserted
by the algorithm is greater than the insertion radius of its parent. If we guarantee that the insertion radius cannot
decrease during refinement process, we can prove that the algorithm terminates. The following lemma, adapted from
[4], formalizes this idea.

Lemma 6. Consider lmin the shortest distance between two points of the input PSLGP, and no two segments ofPmeet
an angle less than 30◦. Given an angle tolerance parameter θ < 14.48◦, the LEPP-Delaunay algorithm terminates
and the output triangulation has no edge shorter than lmin.

Proof. Consider the obtuse terminal triangle t(ABC) with largest angle γ = 120◦ and smallest angle α = arcsin(1/4) ≈
14.48◦. Let t be the target triangle in S target with smallest angle, then lmin = CA = r/2. Since the minimum distance
from D to the circumcircle of t is r/2, then any edge adjoining D will be necessarily greater than CA. Consider
circle δD of radius |CA| centered at point D, as shown in Figure 10(a). δD is fully contained in the circumcircle of t.
Moreover, due to the Delaunay property no point of the triangulation lies inside δD.

Although the tolerance parameter proposed in Lemma 6 ensures an output refined triangulation without smaller
edges, such a low angle bound limit the improvement properties of the algorithm. For example, an angle bound
θ = 25.66◦ (with λ = 1

√
3
) ensures that edges AD and DB are at least as long as the shortest edge CA. Moreover,

there is no pessimistic scenario where the algorithm continuously decreases the insertion radius of new points. The
following lemma presents the relaxed proof for the algorithm’s termination.

Theorem 4. Consider lmin the shortest distance between two points of the input PSLG P, and no two segments of
P meet an angle less than 30◦. Given an angle tolerance parameter θ < 25.66◦, the LEPP-Delaunay algorithm
terminates and the output constrained Delaunay triangulation τref has no edge shorter than λlmin, with λ > 1

√
3
.

Proof. The generation of smaller edges happens when terminal triangle t has largest angle γ close to 120◦ and smallest
angle α close to 25.66◦. Since the minimum distance from D to the circumcircle of t is r/2, then any edge adjoining D
will be necessarily greater than ( r/2

2r sin 25.66◦ )|CA| = |CA|/
√

3. Furthermore, in this configuration the algorithm creates
edge DC which is smaller CA (|DC| > 0.59|CA|), as observed in Figure 10(b). Additional edges smaller than CA
(but longer than DC) could be created only through edge-flip operations if a point lies inside the region illustrated in
Figure 10(c). This region is defined by the intersection of circle δD1 (of radius d(A,C) and centered at point D) and the
circumcircles of triangles t1(ADC) and t2(BCD). Note that any edge-flip operation performed over triangles outside
δD1 can only produce edges longer than CA.
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In practice, the algorithm is observed to terminate for tolerance parameters of up to 37◦ [9,10].

5. The LEPP-Delaunay Algorithm in Practice

A comparison of the LEPP-Delaunay algorithm with the Triangle software [5] is included in [12]. The LEPP-
Delaunay algorithm produces triangulations of quality analogous to those obtained with the Triangle software without
requiring the use of complex point location strategies nor priority queues for target triangles. An evaluation of the
algorithm’s performance in three-dimensional scenarios was discussed in [15].

Figure 11 shows triangulations obtained by the LEPP-Delaunay algorithm for a few input geometries. Figure
12 shows the behavior of both the original LEPP-Delaunay midpoint algorithm and the LEPP-Delaunay centroid
algorithm [12] for different geometries and angle qualities. We compared the performance with the current version
of the open-source Triangle software (which is optimized to use also off-centers). The LEPP-Delaunay centroid
algorithm shows a better performance than its midpoint counterpart, and comparable to that of the Triangle software
(note that neither midpoint nor centroid variants of the LEPP-Delaunay algorithm uses priority queues).

6. Discussion and Future Work

We have proved that the midpoint selection strategy does not introduce points too close to existing points nor does
it create edges arbitrarily small. For a tolerance parameter θ = 25.66◦, we show that, in most cases, the algorithm
produces edges that are longer than lmin, the smallest edge in the initial constrained Delaunay triangulation. Moreover,
in the scenario in which the algorithm creates an edge smaller than lmin, then: (1) the length of the new smallest edge is
at least lmin/

√
3; (2) only quality triangles will be associated with the new smallest edge; and (3) every edge introduced

by the algorithm will be longer than the new smallest edge. So far, this guarantees good performance and termination
for tolerance parameters of up to 25.66◦ (this same methodology could be adapted to provide proofs for θ = 30◦).

Using the proper data structures to allow constant-time access to neighborhood information and to a triangle’s
LEPP, an implementation of the LEPP-Delaunay algorithm consistently takes O(n log n + N) time in practice, where
n is the number of points in the initial PSLG and N ≥ n is the number of points in the output triangulation. The term
n log n covers the cost associated with the construction of the initial triangulation, while the term N covers the cost of
refinement, since points are inserted in constant time.

The methodology introduced in this paper can used in the analysis of LEPP-Delaunay centroid and future variants
of the algorithm. The next step in our research is to extend this methodology to establish the first theoretical proofs
of the LEPP-Delaunay algorithm in three-dimensional refinement. In practice, the algorithms has shown good perfor-
mance [15] and it maintains the advantages of the two-dimensional version, such as independence of the processing
order of triangles or the assurance that new points lie in the interior of the geometry.

The bounds on insertion radius presented in this paper can be fed into Ruppert’s methodology for the analysis
of Delaunay algorithms [2] (later improved by Shewchuk [4]) to produce the theoretical guarantees on the LEPP-
Delaunay algorithm’s good grading and size-optimality based on the local feature size of points. Some of this work
has been recently discussed in [16].
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